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The proposed Viking dual-carrier telemetry modes have generated an interest in
determining the relative power levels of dual carrier intermodulation products
(IMPs) for a Klystron amplifier. To this end, a finite-order power series model for
the time domain input-output response of the Klystron was investigated. The
parameters needed to define the model for a particular Klystron were derived
from experimental measurements of the nonlinear power transfer characteristic
of the amplifier for single carrier transmission. The power series approach, as
described in this report, does not appear to be a useful analytic tool for predicting
dual-carrier IMP levels. With the exception of the first-order IMP, the model is
evidently foo sensitive to small changes in the experimental single carrier data to

provide accurate IMP information.

I. Introduction

In support of proposed Viking dual-carrier operations,
a joint effort is being made to experimentally and analyti-
cally determine the relative power levels of dual carrier
intermodulation products (IMPs) in a Klystron amplifier.
This report addresses the analytical side of this investi-
gation.

A common analytic approach to the problem of comput-
ing IMP power levels in nonlinear amplifiers, such as
traveling wave tubes and Klystrons, is to use a power
series model (Ref. 1). That is, the output y (¢) of the ampli-
fier is assumed to be accurately approximated by a
weighted sum of lower order powers of the input signal
x(¢), within the amplifier passband. It can be shown that
even powers of x(t) do not produce components within
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the amplifier passband, and are therefore deleted in the
power series model (Ref. 1). Accordingly, an Nth order
power series approximation has the form

g = S Car(p), (1)

n=1

with components of y (¢) outside the amplifier passband
being ignored.

It can be demonstrated that the Nth order power series
model above could, in principle, be used to generate the
first N — 1 IMPs in dual carrier transmissions. The power
level of the mth IMP was shown to consist of a weighted
sum of the coefficients C,n,1, Ciniz, * * © , Cy. It was argued
that the C,’s could be derived from experimental measure-
ments of the nonlinear power transfer characteristic of the

JPL TECHNICAL REPORT 32-1526, VOL. XV



amplifier for single carrier transmission. The calculation
of the higher order coefficients C, is increasingly sensitive
to very small variations of this experimental power trans-
fer characteristic. Noise limitations on the accuracy of the
measured data dictate that N should not be too large (e.g.,
N =35); therefore, this analytical model only yields infor-
mation about the lower order IMPs.

In this report, the power series model is applied to
measured power transfer data for Viking channel 17 sup-
plied by R. Leu. All necessary formulas are derived in the
Appendix. In the next section, the step-by-step mathe-
matical procedure used to calculate lower order IMP
power levels based on the given experimental data is out-
lined in detail. The results of this analysis are presented
graphically and discussed in the concluding section.

. Procedure

We are given a set of M measured values of output
power, P, in kilowatts versus input power, P;, in milliwatts
for a Klystron amplifier with a single carrier input. As
indicated in Eq. (A-12) of the Appendix, it is convenient
to use an Nth order power series model of the form

y() = Z(—;—:—S B, @)

=1
! n—1

where N == M, to relate the input x (£) and output y (t) of
the amplifier, within its passband. Subject to this model,
a single carrier input

x(t) = Kcos ot &)

at frequency o, within the passband, produces a single
carrier output

y(t) = Lcos wt 4)

For convenience, assume K is expressed in volts, and L is
in kilovolts; this choice of units will be justified later. Then,
if the amplifier input resistance, R;, and output resistance
R, are given in ohms, we have

Pi = 500K2/R1

(5)
P, = 500 L*/R,

As shown in the Appendix, the relation between K and
L is most conveniently given indirectly by

V=S E,Um (6)

n=1
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using the one-to-one mapping

U=K*

)
V=L/K

with U in (volts)? and V in kilovolts /volt. This implies that
E, has units of kilovolts/(volt)?»-*. Combining Egs. (5)
and (7), we can write

(8)
V= V PORO/PiRi

The particular Klystron amplifier analyzed in this report
has input and output resistances of 50 and 377 Q, respec-
tively. Therefore, the M measured values of P, versus P;
can be transformed into a set of M points

{(Uk’vk); k: 1’2’ T ’M}

We can now use a least-square approach to solve for
the N coeflicients E,. Define matrices E, G, and H:

E, H,
E, H,
E= H= .
EN HN
9)
G1,1 Gl,z GI,N
G2,1 Gz,z GI,N
G = . . .
GN,l GN,z GN,N
where
M
Gl,nE 2 U£+n-2
k=1
(10)
M
H,=3 UV,
k=1
It is proved in the Appendix that
E=G'H (11)

so that we can determine the E,’s with the aid of a matrix
inversion subroutine on the computer.
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Let us briefly examine the units selected above. We are
going to apply this technique to the following experimen-
tal data for Viking channel 17, supplied by R. Leu:

P;, mW P, kW

5.0 6.3
10.0 11.7
15.0 174
20.0 23.0
25.0 287
30.0 32.9
35.0 375
40.0 42.0
45.0 46.3
50.0 48.8

Thus, M = 10, and since R; and R, are 50 and 377 Q,
respectively,

=<5

DO =

Vi=3

The ranges of Uy and V. above are sufficient to ensure that
the elements of G and H lie within a range that allows the
computer to perform the matrix inversion of Eq. (11)
accurately, using double-precision arithmetic.

Having calculated the coeflicients E, according to the
procedure above, we now want to compute the IMPs
produced by the symmetric dual-carrier input

x(t) = A(cos ot + COS wgt); o7 > o (12)
where frequencies o, and o, lie near the single carrier
frequency « for channel 17. For the Nth order power

series model, it is shown in the Appendix that the cor-
responding output has the form

N-1
y () = X B, (cosant + cos But)
m=0

where
N
2 —
Bm= EnAZn—].< n 1 )
z : n—m-—1
n=m+1

Uy = w1 — m(wz - (L)l) (13)

Bm—-—-— w2 + m(w2 - (1)1)
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The output components at frequencies a, and B, have
equal amplitudes B,,, since the input is composed of equal
amplitude carriers. The output carrier components at fre-
quencies o; and o, are identified by the index m = 0. In-
dices m > 0 denote the mth order IMP. Since m = 10,
and the order N of our power series model must be less
than or equal to M, we can, in principle, use the formulas
above to investigate, at most, the first nine IMPs.

Now if A is in volts above, the units of E, dictate that
B,. is in kilovolts. The output carrier components each
have power

P, = 500 B3/R, (14)

expressed in kilowatts, The mth order IMPs are at power
levels

B

P,. = 20log,, —B;m—
(o]

dB (15)

relative to P..

iHl. Results

Before examining the dual-carrier IMP plots, based on
experimental data for Viking channel 17, consider the
accuracy of the analytic procedure that generated them.
We have 10 measured values of output power P, versus
input power P; for the single-carrier input case. The Nth
order power series model of Eq. (2) defines a set of co-
efficients {E,; n=1,2, - - - , N} that must be computed
based on these data. This model defines a relation between
P, and P, in terms of the E,’s that is most conveniently
expressed by Eq. (6) in the domain (U,V); this new
domain is a one-to-one mapping of the original domain
(Pi, P,), according to the specification of Eq. (8). The ten
data points (P;, P,) are therefore converted into ten data
points (U, V); then the E,’s are computed such that Eq. (6)
is the least-square fit to the given data in the domain
(U,v).

The simplest power series model of the form of Eq. (2)
that produces dual-carrier IMPs is of order N = 2, It re-
quires the computation of coefficients E, and E, from the
given data, and yields information about the lowest order
IMP. As shown in Fig. 1, the curve specified by Eq. (6) in
terms of the computed values of E; and E, is a straight
line in the domain (U, V). This curve has a square error
R, =5.39 X 10 with respect to the ten data points;
visually, it does not appear to be a particularly tight fit to
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the given data. However, mapped into the domain (P;, P,),
as presented in Fig. 2, the second-order power series
model seems to correlate rather well with the experimen-
tal data. In fact, it is conceivable that many of the devia-
tions between the data points (P;, P,) and the derived
curve are of the order of the RMS errors in the measure-
ment of the data. If this is indeed the case, then any further
refinements in the derived curve by resorting to higher
order power series models will be strongly influenced by
the noise inherent in the experimental data. Since an Nth
order model produces the first N — 1 dual carrier IMPs,
this implies that information about the mth IMP deter-
mined according to this procedure decreases in accuracy
quite rapidly as m increases. With this understanding,
results are only presented below for models of order
N =2, 3, and 4, although models of higher order (up to
N = 10) were also investigated.

To demonstrate the degree of refinement afforded by
higher order models, results for N = 4 are given in the
(U,V) and (P;, P,) domains in Figs. 3 and 4. For example,
a comparison of Graphs 2 and 4 shows that the derived
curves for N = 2 and N = 4 differ noticeably only in the
high power region (P, S 35kW). In the low-power region,
the models of order N = 2, 3, and 4 should produce similar
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curves of output carrier power P, and first IMP power P,,
versus input dual-carrier amplitude A; this is evident in

Figs. 5-7.

Figures 5-7 are replotted in Figs. 8-10, eliminating the
parameter A. The experimental P, versus P; characteristic
in Figs. 2 and 4 becomes more nonlinear with increasing
input power. Consequently, as the input power is in-
creased, a higher proportion of the output power is trans-
ferred from the carriers to the IMPs, as shown in
Figs. 5 to 10. For P, < 13kW, the 2nd, 3rd, and 4th order
computations of relative IMP power P, are consistent; for
example, when the output carrier powers are each 10 kW,
Figs. 8-10 indicate that the dual first-order IMPs are at a
power level 34 dB below P.. It was argued above that
results for the 2nd and 3rd order IMPs are highly suspect.
Indeed, Figs. 9 and 10 yield very different 2nd order IMP
powers P,, and the dip in P, at P. = 12 kW is totally
unexpected.

In summation, the analytic evaluation of dual-carrier
IMP powers using a power series model is not a produc-
tive area of investigation. With the exception of the first-
order IMP, accurate results cannot be obtained using the
experimental data supplied.
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Appendix

Calculation of IMPs for Symmetric Dual-Carrier
Transmission Using Power Series Model

Consider the following power series model for a non-
linear amplifier. The output signal y (¢) is assumed to con-
sist of a weighted sum of lower order powers of the
input x (¢):

Z [Coxt™ (8) + D (5] (A1)

n=1,2,--

y(t) =

For convenience, the odd and even powers of x(t) are
separated in Eq. (A-1). It is assumed that the frequency
response of the amplifier is flat over a narrow passband:
components of the summation in Eq. (A-1) that fall out-
side this passband are neglected.

In the mathematical analysis below, the following two
identities are needed:

n-1

OS2 f = Q-2(n-1) < n—1 ) cos (1 + 2m) ot
z : n—m-—1
" (A-2)
cos*™ ot =
2 n-1 2
9-2n {( n) +9 E < " > cos (1 + m) thil
n n—m-—1
m=0
(A-3)

As suggested by S. Butman, these identities are easily
proved. For example, consider Eq. (A-2):

2n-1
€082l of = [% (ef»t + e"""t)]

2n-1

= Q-(2n-1) E (211 ; ‘1> ef(zn-21-1wt

=0

(binomial expansion)

n-1

| Z ~1
— pn <2nﬂ >2cos (2n— 20 — 1)t

=0

(combining terms pairwise)
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= 9-2(n-1) E (n 2_”;_1 1> cos (1 + 2m) ot

m=0
m=n—1-1)
And Eq. (A-3) is similarly proved.
Consider a single-carrier input signal

x(t) = Kcos ot (A-4)
where the frequency o lies within the amplifier passband.
It is evident from Eq. (A-3) that x*" (¢) produces com-
ponents at even harmonics of », which fall beyond the
amplifier passband by assumption. From Eq. (A-2), it is
seen that x?"-1(¢) yields components at odd harmonics
of ; it is assumed that only those components at the fun-
damental frequency o are passed by the amplifier. There-
fore, the output is given by

y (t) = L cos ot (A-5)

where the output amplitude L is a weighted sum of the
odd powers of the input amplitude K:

L= E E, K1 (A-6)
n=1,2,. .-
and
2n—1
= 92 (n- -
E,=27? 1)(n_l)Cn (A-T)

Next, suppose the input signal is the sum of two equal
amplitude (symmetric) carriers at frequencies », and o,
both within the amplifier passband:

x(t) = A (cos vt + COS wst) = 24 cOS wgt €OS wob
(A-8)

where

1
mOE§ ((D1 + (1)2)

JPL TECHNICAL REPORT 32-1526, VOL. XV



and, without loss of generality, o; > ;. Since o, and o,
lie within the passband, so must w,. Also, assume o, is
near o, such that vg < < wo. Even terms x*" (t) contain the
factor cos®”wet, which falls outside the passband. There-
fore we only need to consider the odd terms x*"*(¢) in
Eq. (A-1):

2n—1
cos2 1 yot = 22 (n-1) < n—1 > €OS wol

+ higher order harmonics of v,

- o2n—1

cos2n1 wdt = 9-2(n-1) E <n —m— 1) CcOos (1 + 2m) a)dt

m=0

Therefore

x2n-1 (t) = A2n-1 9-2 (n-1) <2n - 1)

n—1

n-1

2n —1
X E ( " ) 2 cos (1 + 2m) wat cos wet
m=0 cos ant + cos Bt

where
am == w; — m<lﬂ2 - ml)
(A-9)

BME 2 +m(w2“m1)

Substituting into Eq. (A-1),

y(t) = E C.Aexp2n—1,—2(n—1) <2::11>
n=1,2,---

n-1
2n —1

<2 (a2

m=0

1) (cos amt + oS Bunt)
Interchanging the order of summation above,

y(t) = Z By (cOs apt + cos Bmf)  (A-10)

m=0,1, -

2n-1 2n_1 -
E . E.A (n_m_1> (A-11)

n=m+l, m+2, - - -

where

B,=

and E, has been defined earlier. Because the input con-
sists of symmetric dual carriers, the output components at
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frequencies «,, and B, have the same amplitude B,, as
shown in Eq. (A-10). The index m = 0 above denotes the
output carrier components; indices m > 0 denote the mth
order IMPs at frequencies a,, and S,.

Suppose we are given a set of M experimental values of
output power P, versus input power P; for the single car-
rier case defined by Eqgs. (A-4) to (A-7). In order to use
these measured data to extract information about the
lower order IMPs, we must first compute a set of E,’s.
Since we are only given M independent measurements to
work with, we can determine at most M unique coeffi-
cients E,. Combining Egs. (A-1) and (A-7), we therefore
specialize to an Nth order power series model

) = Z <_;__1_> B (a2)
B n—1

where N = M. The even power terms x*" () in Eq. (A-1)
have been deleted above, since they are irrelevant to the
problem of interest.

Specializing Eq. (A-8) to the Nth order model, the
single carrier input amplitude K is related to the output
amplitude L by

.
L= 3 E, Kt (A-13)

For convenience, Eq. (A-13) can be transformed using the
one-to-one mapping

U=K?
(A-14)
V=L/K
leading to
V= ﬁ E,Um (A-15)
Since
P, aK?
Pyal?
it follows that
UaP;

VaVP,/P;

Therefore, the M experimental values of P, versus P; can
be mapped into a set of M points

{(U}C,Vk), k:]'szr T ,M}
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For N = M, we can determine a2 unique set of M co-
efficients E, by solving M simultanecous linear equations

M
Uz‘l En = Vk;

n=1

k=12 ---,M  (A-16)

In general, for N= M, a least-square approach can be
used: that is, we want to evaluate the unique set of N
values {E,; n=12, -+ N} such that the (N — 1)th
order polynomial

N
Fy(U)= 3 U™E,

n=1

(A-17)

is the (unique) least square fit to the M experimental
points {(Uy, Vi); k=1,2, - - - ,M}. Thus, we want to
choose the E,’s to minimize the square error

Ry= S [Vi— Fx(Uy]*

k=1

(A-18)

This minimization implies a set of N constraints

Ry
oE,

M N
= Z[Vk— > U;*E,{](—- Ut =0
k=1 n=1

(=12 ---,N (A19)

Eq. (A-19) can be simplified to yield N simultaneous linear
equations that can be solved for the N desired coeffi-
cients E,:

% Gl,nEnzHIQ 921,2, T :N
n=1

where

£

(A-20)
M
Hl == E U;;_l Vk
k=1

The N-fold linear system of Eq. (A-20) can be expressed
in matrix form:

[G..][E.] = [H,]

NxN Nx1 Nx1

Then, the E,’s can be deduced with the aid of a computer
using a matrix inversion subroutine:
[En] = [(;l,'rz:r1 [HI] (A'zl)
Note that for N = M, the E,’s defined by Eq. (A-16) yield
a square error Ry of zero. Therefore these E,’s must be

identical to those computed using the least-square ap-
proach of Eq. (A-21) when N = M.
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